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The controlled motion of a spacecraft in a central gravitational field along a spatial 
trajectory with fixed ends is considered. The variable parameters of the trajectories of 

motion of the craft are approximated by polynomials in powers of the time whose coef- 
ficients are determined from the boundary conditions. 

1. The motion of a spacecraft under the action of the controlling acceleration W ap- 
plied to its center of mass-O, is described by equations in a rotating right-handed ortho- 

gonal system OXYZ whose y-axis coincides with the radius vector r constructed from the 
center of attraction 0 to the point 0, and whose x-axis coincides with the direction of 

motion in such a way that the vector V of the absolute velocity of its center of mass lies 

in the plane Q. The orientation of the axes Osyz relative to the inertial axes OE, qf is 
defined (Fig. 1) by the longitude Q of the ascending node t the inclination i of the instan- 

taneous orbital plane to the equator, and the range angle u. The equations of motion are 

V,’ = W, + W&) v; = w, --ozvX-- 

o=w +o,v,, 2 @_=-PVxfr, g = go (Ro I rf? (2.1) 

The rates of change of the angles defining the orientation of the rotating axes relative 
to the inertial axes are defined by the differential equations 

dQ sin u di du 
dt=O c= 

vsini’ dt 
WT1 Cos u, x = - 0, - wtJ sin if ctg i (1.2) 

The present paper concerns a method of programing the spatial trajectory of motion 

5 

Fig. 1 

of the spacecraft under given boundary conditions. 

The parameters of the trajectory of motion of the 
craft are expressed in the form of analytical relations 
realized by sufficiently simple control functions 

w,(t), W,(t), Wr(& These control functions repre- 
sent the projections on the moving axes ZEJZ of the 
controlling acceleration W applied to the center of 

mass of the craft, 
The controlling acceleration is given by the expres- 

sion 
w = v’WX” + wz;” + w22 (1.3) 

The apparent velocity expended on control is given 

bY T 

2t (T) = $ Wdt (I.41 

where 1’ is the duration of the controlled motion. 
Fulfillment of the inequalities 

rY’,i* ttf Gw itI G tv,~,,x ($)t z:(T)Gvi (,!.5) 

during motion over the control period 0 *< t < 2’ along the predicted craft trajectory are 
verified ; here WrIIin(t) and Wmax (t) are certain bounded functions of time. The control 
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is oonsidered permissible if these inequalities are fulfilled. 
The problem of bringing the spacecraft to a specified point in the phase space within 

a given time has quite a simple solution if the parameters of motion of its center of mass 

over the time interval 0 < t < T are expressed in the form of the polynomials 

V,lr = a, + a,t + a,t*, r = b, + b,t + bd + b,P (1.6) 

These equations enable us tc fmd the remaining parameters of the trajectory and to 
determine the coefficients a,, ,..., a2 ,... , b, ,... , b, from the boundary conditions. 

The polar angle in the plane of the involute between the initial and present positions 

of the radius vector of the center of mass of the craft is given by the equation 

(1.7) 

This equation is integrated with allowance for the fourth equation of (1.1) and the 

first equation of (1.6). 
Carrying out this integration, we obtain 

J = t(a, + ‘/za,t + V&t*) (1.8) 

The coefficients of Eq. (1.8) and of the first equation of (1.6) are determined from 
the boundary conditions for t = 0 and t = T , 

V 20 2 V 3 
a0 = - 

r0 ' 

al= - xk 

T 
---2ao+ 

‘k rJk 

k) 

(1.9) 

We assume that the quantities V,,, V_.k, ro, rk, ri, rk’, Jk and T at the beginning of 
controlled motion are known. 

Differentiating the second equation of (1.6), we obtain the vertical velocity of the 
craft and the relative acceleration along the radius vector of its center of mass, 

r’ = Vy’ = b, + 2b,t + 3b,t2, V; = 2b, + 6b,t (1.10) 

We determine the coefficients b,,... , b, by solving these equations simultaneously 
with the second equation of (1.6) for the prescribed boundary conditions for t = 0 and 
t= T . bo = ro, bl = roe, bz = +- 

3h - 
T - rk. - 2ro* 

, 

bs=G rk+ro.--$- , 
) 

11 = rk - ro 
(1.11) 

The projection of the absolute velocity vector V on the direction of motion is defined 
as the product of the first and second equations of (1.6), 

v, = co + qt + . ..+ c5t5 (1.12) 

Computing the coefficients co,. , . , c5 , we obtain 

cu = aobo, Cl = aOb1 + alb0, c, = aOh + 41 + ad0 (1.13) 

~3 = aob3 $- a& -I- a,bl, c4 = alb3 + a,b,, cs = ad3 

The relative acceleration of the craft in the direction of motion is found bv differen- 

tiating Eq. (1.12). v; = c, + 2c,t + . ..+ 5csP (1.14) 

Multiplication of the first equation of (1.6) by the first equation of (1.10) gives us 
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the rotational acceleration of the craft, 

V,V,lr = PO + Pit + ..*+ Pat4 

Computing the coefficients po,..,, p. , we obtain 

PO = aohr ~1 = 2aob2 + al&r pz = 3aob2 + 2Q2 + & 

ps = 3aA + 2aA, p4 = 3a2b 

(1.15) 

(i.iS) 

Multiply~g the first equation of (1.6) by Eq. (1.12). we obtain the centripetal acce- 
leration along the trajectory of motion of the craft, 

V,% = Qo + qrt + . ..+ q,t7 (1.17) 

Computation of the coefficients q. ,..., g7’with allowance for (1.13) yields 

qo = ao2bo, qt = aoG$bo + dG, q2 = 2ao(& + 4,) + act262 + Gbo 

q2 = 2 fa,a,b, + a,,~,~, + ao+b2) + aoab + ax2% 

g4 = 2(a,a2bl + aoa2b2 + ~o~82) + a12b2 + 4% (1.18) 

q5 = 2a,(a,bz + a,b,) + al% + aa%, qs = aa (a,& 4 2alb3), q? = a2ab, 

The control function W,.(t) is found from the first equation of (1.1) with allowance 

for Eqs, (1.14) and (1.15). 
w* = Cl + PO 3 w2 + Plft i- . ..+ (5c5 + PaIF (1.19) 

The control function W,,(l) is found from the second equation of (1.1) with allowance 
for the second equation of (1.10) and Eq, (1.17), 

w, = 2bz - q. + (6b3 - ql)t - q@ - . ..- q# + g (1.20) 

The gravitational acceleration g in this equation is a known function of time by virtue 

of the fifth equation of (1.1) and the second equation of (1.6). 

Control laws (1.19), (1.20) completely define the motion of the craft in the plane of 
the involute along the chosen trajectory with fixed ends. 

2, The control law for the motion of the orbital plane of the craft (according to [l]) 

is W,= KVx21r (2.1) 

With this control law Eqs. (1.2) are integrable independently of Eqs. (1.1). which makes 
it possible to program the spatial trajectory of the spacecraft. 

Programing of the controlled motion of the orbital plane begins with prescribing the 
shape of the craft trajectory on the surface of a unit sphere. 

The locus of the representing point over the segment of the trajectory where W, = 0 

lies along a great-circle arc, and the angle J is determined from the boundary conditions. 

The representing point is defined as the point of intersection of the radius vector of the 
center of mass of the craft with the surface of the unit sphere. 

For W, # 0 the character of the locus of the representing point is determined from 
the formulas derived in n], 

‘k 

J= 
c 

dz sign (II cos u) 

;” f - (1 + K*) x2 -jr 2kx + KZ - k” fx = ‘os ‘) 

cosi-Ksinusini=k, k=cosh-Ksinuosinio (2.2) 

5k 

s (x - k) sign (K cos u) dz 

Qk-no=;0 (x2-1) 1/-((1+K2)z2+2kz+K2-k2 
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To simplify the subsequent operations involved in determining the shape of the trajec- 

tory described by the representing point we orient the inertial axes in such a way that 

u0 = 8, = i, = 0 

at the initial instant of orbital-plane motion control. 
The third relation of (2.2) then gives us the constant k = 1. 

Let us assume that the extremal value I, of the angle of inclination of the orbital 

plane is not attained during the control period. Then, integrating the first and last equa- 
tions of (2.2), we obtain 

J = &arecos 
II 

(I + R) co9 i - 1 
KZ I 

(2.3) 
1 

Q = f arc co9 ~2 
[ ( -&+2+K2] 

Transforming the second equation of (2.2) for k = 1 , we obtain the range angle, 

1 1 
u = T arc co9 

[ ( Ka -c&+2+K$ (2.4) 

Combining the resulting equation with the second equation of (2.3), we obtain the 

E 

Fig. 2 

identity Q=u (2.5) 

It is evident from geometric considerations that 

this identity can be fulfilled at any instant only 
if the instantaneous orbital plane is in continuous 
contact with the surface of a circular cone with 

its vertex at the center of attraction. The inter- 
section of the surface of a circular cone with the 

surface of a unit sphere is a small circle. 

Let us demonstrate the validity of this geomet- 

ric argument. 
Figure 2 shows a circular cone with its vertex 

at the origin of the inertial coordinate system 4, 

% f. 
During controlled motion the representing point M describes the arc S coinciding with 

the base of the circular cone. 

We see from the geometric construction that the extremal inclination i, of the orbital 
plane corresponds to 8 = u = n/2. 

The same conclusion is obtained by considering the second equation of (1.2) and Eq. 
(2.5). The base angle of the circular cone is iJ2. 

The radius of the small circle which is the base of the circular cone is 

p = l*cos (i.12) (2.6) 

From the second equation of (2.2) for i = i, and u = n/2 we fiid that 

cos(i,/2)=2/ l/i+Ka (2.7) 

Comparing this expression with formula (2.6). we obtain the equation 

p=l/ v-Fi= (2.W 

The length of the small-circle arc on the control segment (Fig. 2) is 

S = pa (2.9) 
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On the other hand we have the equation 

S==f. J 

Transforming this formula with allowance for (2.8) and (2.9) we obtain 

a= Jl/i+K2 

The construction of Fig. 2 with allowance for Eq. (2.7) yield the relation 

(2.10) 

a = arc cos 
(1 + K2) cos i - 1) 

K” 1 (2.11) 

A similar relation can be obtained from the first equation of (2.3) with allowance 

for (2.10). 
We are now fully convinced of the validity of the geometric interpretation of the 

character of motion of the orbital plane of the craft, 
bet us consider the basic case of transfer of the craft from the initial orbital plane to 

the prescribed plane where the control function W, is of constant sign and where the 

motion occurs over a unique small-circle arc. 
The craft can be transferred from the initial orbital plane to the prescribed one along 

an infinite number of arcs of differing curvature. This makes it necessary to optimize 
the trajectory of motion of the orbital plane. 

As our optima&y criterion we take the functional & 
vz = 

s 
j W, 1 dt = min 

t1 
Making use of (2.1). we can rewrite this functional 

k as 1.. 

vz= IK]ydt=min 
s 

(2.12) 

tt 
The unknowns in this equation are the coefficient 

K and the integration limits t, and t,. 
The initial and final instants t, and t, of controlled 

motion of the orbital plane are functions of the coef- 

ficient K. 

The dependence of the integration limits tl and tz 
on the parameter K can be found by means of a geo- 

metric construction (Fig. 3). The motion over the seg- 
ments 0 -I and 2 - k in the figure is along great- 

circle arcs; the motion over the segment 1-2 is over 
a small-circle arc. 

Fig. 3 The quantity J, is the angular distance along a 
great-circle arc between the initial position of the 

radius vector of the center of mass of the eraft and the line of intersection of the initial 
and prescribed orbital planes. 

By virtue of (2.5) and (2.3) 1 
1 

1 ( 

4 
8, = Up = - arc cos 2 K”- cos i, + i + 2 i- K2 ) 

1 
J 

We infer from this expression, Eq. (1.8). the first equation of (2.3). and the geometric 
constructions of Fig. 3 that 
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1 
J1=Jp-;i”arCcos - 

u 

(1 +P)cosik-l 

K” 1 ( = tz ao+ f Ulk + f la2 tg 
> 

(2.13) 

Differentiating functional (2.12) with respect to the parameter K and equating the 
result to zero, we obtain the following equation for determining the optimaf value of the 

quantity K : dp fr 

2 = sign (K) 
s 

F (2.14) 

$3 
Differentiation of formulas (2.13) with respect to the parameter K , we obtain the 

derivatives occurring in Eq. (2. X4), 

dtz PA a K2--I K A_- 1 ---il arccos 
(1 + K2) cas i, - 1 

dK - Va K fKf~‘“__g 1 -fKs (1 -j- Ky f2 KS 

Ttre above expressions enable us to transform formula (2.14) into 

dv 
--I- 

z* v 2 s “dt+V, 
h”2..__1 

dK - or t’K%a_az i -f- Kz-- 
- - 

fl 

(2.25) 

(2,16] 

HZ 
- (1 + Kp BTC cos 

(1 + Kz) cos ik - 1 

K2 

This equation has a solution as li: -* 00, because each of its terms tends to zero. 

In this case Eqs. (2.13) yield Jo = yz = ~~~ t, = or, = tp 

Were tf, is the time required for the craft to reach the line of intersection of the initial 

and prescribed orbital pianes in moving along the great-circle arc Op. 

Transforming integral (2.12) with allowance for (‘2. lo), (X.7), and the fourth equation 

of (1, l), we obtain IKI ah. 

pz= pi+ Kz ,s 
V, du (2.27) 

0 
With allowance for (2. XL) as H - 00 I (2.17) becomes 

v,=v * XP 'k 

In fact, however, K is a finite quantity by virtue of the first inequality of (l_ 51, 

The quantity K must be maximized in order to minimize the expenditure on control 
of the apparent velocity UZ. The coefficient K is chosen by the method of successive 

approximations with allowance for inequalities (1,5), The next step is to use Eqs. (2.13) 
to find the initial and final instants tl and & of controlled motion of the orbital plane 
of the craft. 

3, An approximate analytical evaluation of the permissibility of the control on the 
basis of ineqnalities (l,5) is carried out by expressing the function IF(t) as a polynomial 
of degree n. This entails integrating Eq. (1.4) and finding a formula for determining 
the apparent velocity expended on control, i.e. V(T). 
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The polynomial describing the function w(t) is obtained by expanding the right side 

of Eq. (1.3) in a Taylor series and discarding the small terms. 
To simplify the formulas defining the coefficients of the series we expand the gravi- 

tational acceleration in (1.20) in a Taylor series at the point rO, 
co 

g = g” 2 &F, g” = go (Ro / ro)% (3.1) 
a==0 

This series converges very rapidly for real controlled-motion trajectories, since the 

relative change in the quantity r over the control segment is insignificant. 

Series (3.1) is approximated with sufficient accuracy by the polynomial 

g = go@, + s,t + . ..+ s&)1 (3.2) 
. . The coeffrcrents so,... , ~3 of this polynomial computed with allowance for Eqs. (1.10) 

are given by the expressions 
so = 1, sr = - 2b,/b,, s, = (3b12 - 2bsbo) / bo2 (3.3) 

sa = 2(- 2blS + 3bob,b, - boab3) / b,* 

By virtue of the smallness of the relative change in the radius r and the boundedness 
of the function R(t) we can assume that the coefficients qs, qe, q7 in (1.17) are equal 

to zero. 
We can now write Eqs. (1.19), (1.20) and (2.1) with allowance for (3.2) and (1.17) 

in the form 
WX = o. + aIt + . ..+a&‘. W, = PO + flit + . ..+ fJ4t4 (3.4) 

w* = To + Tit + . ..+ rat4 

The coefficients of these polynomials are given by the formulas 

The coefficients 
We can now find 

The coefficients 

a*=(n+qcn,l I-P, (n = 0,l) 2,3,4) 

13, = (n + 1) (n 4 2) b,+z - q, + Ps,’ r,=Kq n 

b,, bj, be, s, are equal to zero. 
the function W(t) by substituting Eqs. (3.4) into (1.3), 

W = (j. + jlt + . ..+j@)“* 

lo,..., Jo turn out to be 

(3.5) 

(3.6) 

i. = ao2 + PO2 + ro2, 71 = 2(aoal + BOSI + TOTI) 

i2 = 2(aocrz + BOB2 + ror2) + q2 + 01” + r12 
j3 = 2(aoa3 + PO83 + yoT3 + alcc, + t31B2 + rlr2) (3.7) 

14 = 2(aOa4 + fiOp4 + 7074 f a1a3 f 8188 + TlrS) + %' + fi2" + r22 

i6 = Vw4 + LB4 + T1T4 + %a3 + fJ2B3 + xtr3) 

ia - 2(%a4 + B2B4 + T2T4) + a32 + I332 + T32 

i7 = 2(a3a4 4 P3b4 + T3T4), is.= a42 + Bp2 + Ta2 

The function W(t) has first-order discontinuities at the initial and final instants tl and 
t2 of controlled motion of the orbital plane of the craft. This means that its Taylor- 

series expansion must be taken separately over each continuous segment, and that the 
integration limits in formula (1.4) are split into 0 < t1 < t2 < 2’ . To simplify our 
expressions we assume that t, == 0, t, = 2’. Next, expanding the right side of Eq. (3.6) 
in a Taylor series at the point to (where W = W,,, ), we obtain 
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W (E) - T;p (to) i l,AP (Af=t-ft,) (3.8) 
n=‘o 

This series converges rapidly for permissible trajectories by virtue of the boundedness 
of W(t). 

Practically, with many real trajectories it is sufficient to retain three terms only, 

IF = ~(W, f &A$ f IBW), W(Q) = (j@ + fl&) + **r f is&s) % (3.9) 

Computing the coefficients Z,, I,, Z4 of this polynomial, we obtain 

Integrating Eq. (1.4) with allowance for (3.9). we obtain the apparent’velocity expend- 

ed on contrO1* v(T) = TW(t,)[z, + Zr(r&T - to) + tz(‘/sTs - t,T + Q] (3.10) 

The permissibility of a chosen trajectory of craft motion with fixed ends can be veri- 
fied by substituting (3.6). (3. IO) into inequalities (1. 5}. 
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The system of third-order differential equations describing the motion of a single-axis 

gyro stabilizer with a floating integrating gyro is investigated. The stabilizer motor is 

controlled by means of a contact device with a dead zone 6. It is shown that for a suf- 

ficiently small 6 the system has a closed trajectory corresponding to the autooscillations 
of the gyro stabilizer. The domain of immersion of the closed trajectory in the phase 
space is specified. 

The autooscillations of gyro stabilizers were investigated in p-41. The author of 
p, Z] analyzed the motion of a gyro stabilizer En the case of a relay-type stabilizer 
motor control, He determined the parameters and inv.estigated the stability of the peri- 
odic motion by the method of point transformations. The author of [3, 41 treated the 
problem by the harmonic linearization method of E. P. Popov in conjunction with elec- 
tronic modelling. The primary emphasis in these studies was on computing the periodic 
motion. In the theory of gyroscopic instruments empl~ing aut~ciliato~ operating 
modes it is especially important to investigate the conditions of existence of closed tra- 
jectories of the differential equations of gyro system motion, to prove the existence of 


